
Programming Assignment

1

Complexity and Correctness Proof

Student Full Name

Institutional Affiliation

Course Full Title

Instructor Full Name

Due date

2

Proof Activity

Claim 1.

 The Bellman-Ford shortest path algorithm takes time Θ(E · V) where V is the number of vertices

and E is the number of edges.

Proof

 This proof is adapted from Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms [3].

 The Bellman-Ford algorithm finds the shortest path between any two vertices in a weighted graph,

even in the presence of negative weights. The algorithm works by iteratively relaxing all the edges in the

graph. Let G = (V, E) be a weighted directed graph with vertices V = v1, v2, ... vn and edges E = (u,v,w) |

u,v V, and w is the weight of the edge from u to v. Let dist[v] be the shortest distance from the source

vertex s to vertex v in the ith iteration of the algorithm.

 The Bellman-Ford algorithm relaxes all the edges (u, v) in the graph by comparing the distance

from s to v through u with the current distance estimate for v. If the distance estimate for v can be

improved by going through u, the algorithm updates dist[v] with the new distance estimate, i.e., dist[v] =

dist[u] + w(u,v).

 The algorithm repeats the relaxation process for V-1 iterations since any shortest path between two

vertices can have at most V-1 edges. At the end of each iteration, dist[v] is the shortest path distance from s

to v that uses at least i edges.

 If there is a negative weight cycle in the graph, the algorithm will continue to find shorter and

shorter paths through the cycle, and the distances will become arbitrarily small. Therefore, the Bellman-

Ford algorithm can detect the presence of negative weight cycles by checking if there are any

improvements in the distances after the V-1st iteration. If there are, then there is a negative weight cycle in

the graph. The Bellman-Ford algorithm has a time complexity of O(|V||E|), which is worse than Dijkstra's

algorithm. However, Bellman-Ford can handle negative weight edges, while Dijkstra's algorithm cannot.

Proof Summary

 We debate how long each of the algorithm's three main parts runs. As we visit each vertex exactly

once, initializing the graph's vertices takes linear time. The primary loop repeatedly cycles through the

number of vertices and all the edges in the examine whether using that edge results in a shorter cost path

on the graph. Keep in mind that we cycle through the vertices because the longest, non-cyclic path can

only visit a certain number of them in the graph. Then, to look for a cycle, we iterate over the edges once

more. As a result, the iteration that repeats for the number of vertices and iterates through all the edges

each time dominates the overall run time.

3

Algorithm

Figure 1: Bellman-Ford Algorithm

Real World Application

 One real-world application of the Bellman-Ford algorithm is in the field of network routing

protocols. Routing protocols are used to determine the best path for data to travel through a network, and

the Bellman-Ford algorithm can be used to calculate the shortest path between two nodes in the network.

 For example, the Routing Information Protocol (RIP) is a distance-vector routing protocol that uses

the Bellman-Ford algorithm to calculate the best path for data to travel through a network. Each router in

the network maintains a routing table that contains the distance to each destination network and the next

hop router that should be used to reach that destination. The routers exchange routing updates with each

other to keep their routing tables up to date.

 The Bellman-Ford algorithm is used by RIP to calculate the shortest path between two routers in

the network. Each router uses the distance and next hop information in its routing table to determine the

shortest path to each destination network. The routers exchange routing updates with each other to ensure

that they all have the same information about the network topology.

 Tanenbaum, A. S., & Wetherall, D. (2011). Computer networks. Pearson.

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT

Press.

4

References

